Over the course of the past half-century, a building typology has emerged and taken hold in the urban hinterlands that hugs our highway systems. Beginning as a response to expensive urban real estate, corporations constructed office buildings outside the limits of major cities, facilitating the ability of employees to travel to work in their private vehicles.

Along the 101 corridor between San Francisco and San Jose, particularly around the SFO airport, random corporate headquarters, chain hotels, parking lots, airport support structures and office parks form an almost continuously paved territory that floats precariously close to the surface of the San Francisco Bay. We will address these buildings and their surrounding asphalt as landscape— as the potential site for an architecture that can be excavated out of their very substance. That is, architecture that emerges out of architecture. We will approach these building sites with a non-judgmental spirit and a forensic eye for detail, as archeologists searching for new urban possibilities, considering an architecture that is reductive and subtractive, rather than cumulative and additive. We will ask: how can we begin to reverse the environmental degradation of the past 50 years, while at the same time taking on the least appealing architectural products of that period?

The studio will emphasize lightness over weight, air and water over earth, and labor over material. We will challenge the definition of architecture as that which privileges new buildings on empty sites. We will optimistically assume that this now-
ubiquitous detritus of the neo-liberal projects of the past several decades can become less privatized, less devoted to purely 'urban', anthropocentric values, and more open to ecological diversity and social compromise.

Our design process will comprise four segments of three weeks each, as follows:

1. **SHORT VIEW: SITE, PROGRAM, FORM**
2. **SYSTEMS VIEW: STRUCTURE, AIR, WATER**
3. **LEGAL VIEW: EXIT, STAIR, BATHROOM**
4. **CLOSE VIEW: WALL, DETAIL, DIAGRAM**

INTERIM WORKSHOP: LONG VIEW

Between the third and fourth segments of the studio, we will pause to look forward through the decades of the 21st century, exploring the implications of the design decisions at the scale of the building. This work will be collaborative, and will involve issues that fall outside the parameters of building design *per se*, including issues of policy, financing, and ethics and ownership.

COURSE POLICIES

As with all studios, student participation is integral to the content of the course. Thus attendance is required, and failure to attend more than one class without a legitimate excuse will affect the “class participation” component of the grade.

GRADING

The grading is based on the following criteria, with specific weight given to each component.

- Tri-Weekly deliverables: 60% (15% for each three-week segment)
- Interim Collaboration: 15%
- Class participation and discussion: 15%
- Final presentation: 10%

OFFICE HOURS

Please make an appointment office hours to discuss any issues or special circumstances.

- Tuesdays 1:30 – 3:00, or by arrangement.
- 352 Wurster Hall

ONE UNIT SEMINAR (arch 298)

Students will register for a 1-unit seminar “Introduction to Practice”, taught by Roddy Creedon.
COURSE SCHEDULE

Weeks 1, 2, 3:
FIRST VIEW: SITE, PROGRAM, FORM
Deliverables:
 Section through site and building plotted @ 1:200", including rhino
 Ground level plan, 1:200
 “Zone of deconstruction” plan 1:100
 Small model in a subtractive medium.

Weeks 4, 5, 6:
SYSTEMS VIEW: AIR, WATER, STRUCTURE
Deliverables:
 Section through the zone of deconstruction @ 1:100, including interior elevation.
 Development of the architectural language that integrates the existing and new construction—sketches.

Weeks 7, 8, 9:
LEGAL VIEW: EXITS, STAIRS, BATHROOMS
Deliverables:
 Plans, sections and interior elevations of bathroom, stairs, and other adjacent spaces.@ 1:50.
 Exiting diagram, nts.
 Code citations

Weeks 10, 11:
LONG VIEW: C. 2100

Weeks 12, 13, 14:
CLOSE VIEW: WALL, DETAIL, DIAGRAM
Deliverables:
 Wall sections through revised construction @ 1:20. (at least 3) including rhino.
 Details @ 1:4’. (at least 6) including grasshopper.

Week 15:
VIEWS TO THE OUTSIDE
<table>
<thead>
<tr>
<th>Week</th>
<th>Monday</th>
<th>Wednesday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>August 30</td>
<td></td>
<td>September 1</td>
</tr>
<tr>
<td>Week 2</td>
<td>September 6 (no class)</td>
<td></td>
<td>September 8</td>
</tr>
<tr>
<td>Week 3</td>
<td>September 13</td>
<td></td>
<td>September 15 Extra Class</td>
</tr>
<tr>
<td>Week 4</td>
<td>September 20 1st set of deliverables due.</td>
<td></td>
<td>September 22</td>
</tr>
<tr>
<td>Week 5</td>
<td>September 27</td>
<td></td>
<td>September 29</td>
</tr>
<tr>
<td>Week 6</td>
<td>October 4</td>
<td></td>
<td>October 6 (no class)</td>
</tr>
<tr>
<td>Week 7</td>
<td>October 11 2nd set of deliverables due</td>
<td></td>
<td>October 13 Extra class</td>
</tr>
<tr>
<td>Week 8</td>
<td>October 18 MID-REVIEW</td>
<td></td>
<td>October 20</td>
</tr>
<tr>
<td>Week 9</td>
<td>October 25</td>
<td></td>
<td>October 27</td>
</tr>
<tr>
<td>Week 10</td>
<td>November 1 3rd set of deliverables due</td>
<td></td>
<td>November 3 Extra Class INTERIM WORKSHOP</td>
</tr>
<tr>
<td>Week 11</td>
<td>November 8</td>
<td></td>
<td>November 10</td>
</tr>
<tr>
<td>Week 12</td>
<td>November 15 WORKSHOP REVIEW</td>
<td></td>
<td>November 17</td>
</tr>
<tr>
<td>Week 13</td>
<td>November 22</td>
<td></td>
<td>November 24 (no class)</td>
</tr>
<tr>
<td>Week 14</td>
<td>November 29</td>
<td></td>
<td>December 1</td>
</tr>
<tr>
<td>Week 15</td>
<td>December 5 4th set of deliverables due</td>
<td></td>
<td>FINAL REVIEW, THURS DECEMBER 8 & FRI 9</td>
</tr>
</tbody>
</table>
APPENDIX:

NAAB CONDITIONS FOR ACCREDITATION FOR PROFESSIONAL DEGREE PROGRAMS IN ARCHITECTURE:

The NAAB Conditions for Accreditation outlines the requirements that an accredited degree programs must satisfy. The following are selected excerpts that relate to and frame the ‘Comprehensive Design’ requirement as established by NAAB.

For the purpose of accreditation, graduating students must demonstrate understanding or ability as defined below in the Student Performance Criteria (SPC). The criteria encompass two levels of accomplishment:

- **Understanding** — The capacity to classify, compare, summarize, explain and/or interpret Information.
- **Ability** — Proficiency in using specific information to accomplish a task, correctly selecting the appropriate information, and accurately applying it to the solution of a specific problem, while also distinguishing the effects of its implementation.

STUDENT PERFORMANCE -- EDUCATIONAL REALMS & STUDENT PERFORMANCE CRITERIA

Realm A: Critical Thinking and Representation: Architects must have the ability to build abstract relationships and understand the impact of ideas based on research and analysis of multiple theoretical, social, political, economic, cultural and environmental contexts. This ability includes facility with the wider range of media used to think about architecture including writing, investigative skills, speaking, drawing and model making.

Realm B: Integrated Building Practices, Technical Skills and Knowledge: Architects are called upon to comprehend the technical aspects of design, systems and materials, and be able to apply that comprehension to their services. Additionally they must appreciate their role in the implementation of design decisions, and the impact of such decisions on the environment.

Realm C: Leadership and Practice: Architects need to manage, advocate, and act legally, ethically and critically for the good of the client, society and the public. This includes collaboration, business, and leadership skills.

The comprehensive design studio addresses (primarily) the issues in **REALM B:**

INTEGRATED BUILDING PRACTICES, TECHNICAL SKILLS AND KNOWLEDGE:

B. 1. Pre-Design: *Ability* to prepare a comprehensive program for an architectural project, such as preparing an assessment of client and user needs, an inventory of space and equipment requirements, an analysis of site conditions (including existing buildings), a review of the relevant laws and standards and assessment of their implications for the project, and a definition of site selection and design assessment criteria.

B. 2. Accessibility: *Ability* to design sites, facilities, and systems to provide independent and integrated use by individuals with physical (including mobility), sensory, and cognitive disabilities.

B. 3. Sustainability: *Ability* to design projects that optimize, conserve, or reuse natural and built resources, provide healthful environments for occupants/users, and reduce the environmental impacts of building construction and operations on future generations through means such as carbon-neutral design, bioclimatic design, and energy efficiency.

B. 4. Site Design: *Ability* to respond to site characteristics such as soil, topography, vegetation, and watershed in the development of a project design.
B. 5. Life Safety: *Ability* to apply the basic principles of life-safety systems with an emphasis on egress.

B. 6. Comprehensive Design: *Ability* to produce a comprehensive architectural project that demonstrates each student’s capacity to make design decisions across scales while integrating the following SPC:

B. 7. Financial Considerations: *Understanding* of the fundamentals of building costs, such as acquisition costs, project financing and funding, financial feasibility, operational costs, and construction estimating with an emphasis on life-cycle cost accounting.

B. 8. Environmental Systems: *Understanding* the principles of environmental systems’ design such as embodied energy, active and passive heating and cooling, indoor air quality, solar orientation, daylighting and artificial illumination, and acoustics; including the use of appropriate performance assessment tools.

B. 9. Structural Systems: *Understanding* of the basic principles of structural behavior in withstanding gravity and lateral forces and the evolution, range, and appropriate application of contemporary structural systems.

B. 10. Building Envelope Systems: *Understanding* of the basic principles involved in the appropriate application of building envelope systems and associated assemblies relative to fundamental performance, aesthetics, moisture transfer, durability, and energy and material resources.

B. 11. Building Service Systems: *Understanding* of the basic principles and appropriate application and performance of building service systems such as plumbing, electrical, vertical transportation, security, and fire protection systems.

B. 12. Building Materials and Assemblies: *Understanding* of the basic principles utilized in the appropriate selection of construction materials, products, components, and assemblies, based on their inherent characteristics and performance, including their environmental impact and reuse.
